Communications to the editor

3'-DEOXYAMIKACIN AND 3',4'-DIDEOXYAMIKACIN AND THEIR ANTIBACTERIAL ACTIVITIES

Sir:

As reported by UMEZAWA in 19681) and 19692), the 1-amino or the 3-amino group of the 2-deoxystreptamine moiety of kanamycin is involved in the binding of the antibiotic with 3'-O-phosphotransferases and the modification of one of these amino groups was suggested to produce derivatives active against resistant strains. In fact, butirosins³⁾ which contain a 1-N-(4-amino-2-hydroxybutyryl) group inhibit the growth of resistant strains and amikacin⁴); 1-N-(4-amino-2-hydroxybutyryl)kanamycin A shows a broad spectrum of activity against both sensitive and resistant strains. Therefore, we attempted the syntheses of 3'-deoxy and 3',4'-dideoxy derivatives of amikacin, because we thought that such derivatives should show broader spectra against 3'-O-phosphotransferase-producing strains⁵) than amikacin and be effective against 4'-O-adenylyltransferase-producing strains.6,7) Moreover, this should give us additional information on the structure-activity relationships of kanamycinlike compounds.

3'-Deoxyamikacin (2) was prepared from 3'deoxykanamycin A⁸⁾ by coupling the (*S*)-4benzyloxycarbonylamino - 2 - hydroxybutyryl residue to the 1-amino group of 3'-deoxykanamycin A in the usual manner.⁴⁾ As will be reported in another paper⁹⁾, this coupling was also successfully accomplished by zinc chelation with Zn (OAc)₂ followed by regioselective N-trifluoroacetylation with ethyl trifluoroacetate. $[\alpha]_{D}^{2b} + 74^{\circ}$ (*c* 0.4, water); Found: C, 42.68; H, 7.06; N, 10.53%. Calcd for C₂₂H₄₃N₅O₁₂·H₂CO₃·H₂O: C, 42.52; H, 7.29; N, 10.78%.

3',4'-Dideoxyamikacin (3) was similarly prepared from 3',4'-dideoxykanamycin A, $[\alpha]_{25}^{15}$ + 80° (c 0.5, water); Found: C, 45.06; H, 7.08; N, 11.02%. Calcd for C₂₂H₄₂N₅O₁₁·H₂CO₃: C, 44.95; H, 7.22; N, 11.40%. The starting 3',4'dideoxykanamycin A was prepared *via* 3',4'unsaturation of the corresponding 3',4'-bisbenzylsulfonyloxy derivative of 6'-N-benzyloxycarbonyl-4'',6''-O-cyclohexylidene-5,2'-O-isopropylidene-2''-O-tetrahydropyranyl-1,3,3''-tri-N-

tosylkanamycin A by treatment with sodium iodide-zinc powder in DMF in the usual manner¹⁰, $[\alpha]_D^{25} + 117^\circ$ (c 1, water) as monocarbonate. Details of the synthesis of **2**, **3** and 3',4'-dideoxykanamycin A will be described in the near future.

The antibacterial activity of **2** and **3** against several strains of bacteria of clinical origin is shown in Table 1 in comparison with those of amikacin (1) and 4'-deoxyamikacin¹¹⁾ (4). In order to compare the activity of each compound, MIC values were transformed to the index values as shown in the first line of Table 1 because, if MIC values are used, the presence of one highly resistant strain produces a strong influence on the mean MIC value. Using the index values (1 for $\leq 0.195 \ \mu$ g/ml, 2 for 0.39 μ g/ml, 3 for 0.78 μ g/ml...as shown in Table 1) the mean index (c) for each substance was calculated as follows:

$$c = \frac{\sum_{i \to 10} (index) \times (No. of strains with the index)}{No. of all strains}$$

This mean index value was transformed to a mean MIC value according to the following equation: mean MIC $(\mu g/ml) = d = (0.195/2) \cdot 2^{\circ}$. The strength of each substance was calculated from the value of d_0/d ($d_0: d$ for amikacin). As shown in Table 1, **2** is found to be most active except against *Providencia*, against which **3** was most active. As reported by NAITO *et al.*¹¹⁾, 4'-Deoxyamikacin (**4**) is much less active than **1**. Therefore, it can be concluded that the 3'-deoxygenation of amikacin increases the antibacterial activity and 4'-deoxygenation decreases the

	Index	1	2	3	4ª	5	6 ^b	7	8	9	10	<i>c</i> (<i>d</i>)	stren- gth
	MIC (µg/ml)	≦0.195	0.39	0.78	1.56	3.12	6.25	12.5	25	50	≧100		
For <i>Klebsiella</i> (46 strains)*	1			13	15 (60)	7	7 (91)	4				4.43 (2.10)	1
	2		1	16	18 (76)	7	4 (100)					3.93 (1.49)	1.41
	3			16	13 (63)	7	9 (98)	1				4.26 (1.87)	1.12
	4				10 (22)	20	10 (87)	6				5.26 (3.74)	0.56
For Serratia (43 strains)	1			1		5	11 (40)	19	6		1	6.63 (9.66)	1
	2			1	3	8	23 (81)	7			1	5.86 (5.66)	1.71
	3			1	1	5	17 (56)	15	3	1		6.33 (7.84)	1.23
	4				1	1	6 (19)	11	18	5	1	7.47 (17.29)	0.56
For <i>Pyocyanique</i> (32 strains)	1					1	3 (13)	9	12	6	1	7.69 (20.13)	1
	2					1	3 (13)	9	15	3	1	7.59 (18.79)	1.07
	3					1	0 (3)	4	1	16	10	8.91 (46.90)	0.43
	4						1 (3)	2	4	17	8	8.91 (46.90)	0.43
For <i>Enterobacter</i> (28 strains)	1			2	7 (32)	11	3 (82)	3	1	1		5.18 (3.54)	1
	2			5	4 (32)	13	3 (89)	2	1			4.86 (2.83)	1.25
	3			3	10 (46)	5	6 (86)	2	1	1		5.04 (3.21)	1.10
	4				2 (7)	10	7 (68)	4	3	2		6.07 (6.55)	0.54
For Proteus (19 strains)	1					3	4 (37)	6	6			6.79 (10.79)	1
	2					5	5 (53)	5	4			6.42 (8.35)	1.29
	3				1	2	4 (37)	7	5			6.68 (10.00)	1.08
	4						3 (16)	4	8	4		7.68 (19.99)	0.54
For <i>Providencia</i> (16 strains)	1				1	1	4 (38)	10				6.44 (8.47)	1
	2				1	1	8 (63)	6				6.19 (7.12)	1.19
	3				1	2	8 (69)	5				6.06 (6.51)	1.30
	4					1	1 (13)	5	8	1		7.44 (16.93)	0.50
For <i>Citrobacter</i> (9 strains)	1				1	4	1	2		1		5.89 (5.78)	1
	2				2	3	2	1	1			5.56 (4.60)	1.26
	3				2	2	2	2	1			5.78 (5.36)	1.08
	4					2	2	3	1		1	6.78 (10.71)	0.54
For E. coli (8 strains)	1				2	3	3					5.13 (3.41)	1
	2			1	1	4	2					4.88 (2.87)	1.19
	3				2	2	3	1				5.38 (4.06)	0.84
	4					2	5	1				5.88 (5.74)	0.59

Table 1. Antibacterial spectra of amikacin (1), 3'-deoxyamikacin (2), 3',4'-dideoxyamikacin (3) and 4'deoxyamikacin (4) for the strains of clinical origin.

a: Ratio of cumulative number of strains (expressed as %) falling in the range of $0.195 \sim 1.56 \ \mu g/ml$ for the number of all strains.

b: for the range of $0.195 \sim 6.25 \ \mu g/ml$.

* Number of susceptible strains.

activity.

Tsutomu Tsuchiya Tomo Jikihara Toshiaki Miyake Sumio Umezawa Institute of Bioorganic Chemistry, 16l4 Ida, Nakahara-ku Kawasaki, 211 Japan

> Masa Hamada Hamao Umezawa

Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received September 26, 1979)

References

- DOI, O.; M. OGURA, N. TANAKA & H. UME-ZAWA: Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of *Pseudomonas aeruginosa*. Appl. Microbiol. 16: 1276~1281, 1968
- UMEZAWA, H.: Mechanisms of inactivation of aminoglycosidic antibiotics by enzymes of resistant organisms of clinical origin. Progress Antimicr. & Anticancer Chemoth. Vol. 2, pp. 567~571, 1970
- Woo, P. W. K.; H. W. DION & Q. R. BARTZ: Butirosins A and B, aminoglycoside antibiotics. I. Structural units. Tetrahed. Lett. 1971: 2617~2620, 1971
- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972
- COURVALIN, P. & J. DAVIES: Plasmid-mediated aminoglycoside phosphotransferase of broad substrate range that phosphorylates amikacin. Antimicr. Agents & Chemoth. 11: 619~624,

1977

- SANTANAM, P. & F. H. KAYSER: Tobramycin adenylyltransferase: a new aminoglycosideinactivating enzyme from *Staphylococcus epidermidis*. J. Infect. Dis. 134: S33~S39, 1976
- 7) LE GOFFIC, F.; A. MARTEL, M. L. CAPMAN, B. BACA, P. GOEBEL, H. CHARDON, C. J. SOUSSY, J. DURAL & D. H. BOUANCHAUD: New plasmidmediated nucleotidylation of aminoglycoside antibiotics in *Staphylococcus aureus*. Antimicr. Agents & Chemoth. 10: 258~264, 1976
- UMEZAWA, S.; T. TSUCHIYA, R. MUTO, Y. NISHIMURA & H. UMEZAWA: Synthesis of 3'deoxykanamycin effective against kanamycinresistant *Escherichia coli* and *Pseudomonas aeruginosa*. J. Antibiotics 24: 274~275, 1971
- TSUCHIYA, T.; Y. TAKAGI & S. UMEZAWA: 1-N-Acylation of aminocyclitol antibiotics via zinc chelation and regiospecific N-trifluoroacetylation. Tetrahed. Lett. in press
- UMEZAWA, S.; H. UMEZAWA, Y. OKAZAKI & T. TSUCHIYA: Synthesis of 3',4'-dideoxykanamycin B. Bull. Chem. Soc. Jpn. 45: 3624~ 3628, 1972
- NAITO, T.; S. NAKAGAWA, S. TODA, K. FUJISAWA & H. KAWAGUCHI: Aminoglycoside antibiotics. XIII. Synthesis and activity of 4'-deoxy-6'-N-methylamikacin and related compounds. J. Antibiotics 32: 659~664, 1979